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A Method for Accurate Design of a Broad~Band

Multibranch Waveguide Coupler*
K. G. PATTERSON~

Summary—A new approach is made to the problem of tapering
the branch impedances for broad-band performance. A taper is pro-
posed, which, for a S-db branch coupler, is shown to give much better
results in theory and practice than the currently used biiomial taper.

Also, simple expressions are developed which enable the effects
of waveguide junction discontinuities to be adequately corrected,
thus allowing a greater accuracy in design to be achieved than was
hitherto possible.

LIST OF SYMBOLS

Ago = Guide wavelength at the midband fre-

quency.

fo = Midband frequency of a coupler.

Ak = Normalized voltage vector (k= 1, 2, 3

or 4).

I’= Reflection coefficient.

T= Transmission coefficient.

Z.= nth branch guide impedance.

Z.’ = Corrected nth branch guide impedance.

Z.= Z~/ZO, where ZO = main guide impedance.

2. ‘ = Z.r[zo.

y.= 1/2..

gn = nth element of normalized prototype

network in farads or henries with respect

to unity impedance level.

p, u = Constants.

N= Total number of branches.

A, B, C, D = Matrix parameters.

j = Complex operator.

a = Broad dimension of all guides.

bo = Narrow dimension of main and auxiliary

guides.

b%= Narrow dimension of nth branch guide.

jB = Equivalent susceptance.
m2 = Ideal transformer impedance ratio.

O= Electrical line length in radians.

dfi, L = Displacement of reference planes.

L%= Physical length of a branch guide.

Dmv = Spacing between branch guide centers

(p=n-11).

A = Free-space wavelength at a frequency f.
f= Frequency.

u=2Tf.

uo=2Tfo.
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INTRODUCTION

SINCE 1945, a considerable number of papers have

been written on the subject of directional couplers,

notably by Riblet [1], Mumford [2], and Lippmann

[3]; much of the theory presented therein is applicable

to multi-element couplers employing branch lines or

guides as coupling elements. These authors, however,

were principally concerned with methods of analysis of

the general multi-element coupler with ideal coupling

elements; when practical design information on branch

couplers is required, the engineer usually turns to the

report by Harrison [5].

The section of Harrison’s report [5] which deals with

branch couplers is based on a report by Lippmann [4]

which is not generally available, and which is restricted

in its scope. The essential problem of optimum taper of

branch impedances is given scant consideration, and the

problem of correction for the discontinuity effects at

the T-junctions is not accurately treated except for cer-

tain waveguide sizes where Lippmann’s results [4] are

quoted.

This paper is concerned with these two problems and

is intended to fill in the gaps in the present design tech-

niques with the presentation of some simple and gen-

erally applicable design equations.

TAPER OF BRANCH IMPEDANCES

The branch waveguide coupler comprises a main

guide coupled to an auxiliary guide of equal size by a

number of branch guides (Fig. 1). The branch guides are

usually series-connected by T-junctions to the main and

auxiliary guides; their narrow dimension may be varied
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Fig. l—Mukibranch waveguide coupler, cross section.
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according to the taper and coupling required; their

broad dimension is made equal to that of the main and

auxiliary guides. If the T-junctions are ideal; i.e., there

are no waveguide discontinuity effects, the length of a

branch guide will be lgO/4, and the spacing between the

corresponding points of adjacent guides will be hg/4 at

the midband or design frequency. When the ratio of in-

put power to power coupled to the auxiliary guide is
3 db, such a coupler has all the properties of a hybrid

junction.

There is a plane of symmetry between the main and

auxiliary guides which bisects the branch guides trans-

versely. Hence this type of coupler can be fully analyzed

by the mode superposition method employed by Reed

and Wheeler [7] and Young [8]. The substance of this

method is that two related two-port circuits are derived

from the coupler by first placing a magnetic and then

an electric wall in the above mentioned plane of sym-

metry. One two-port circuit comprises a number of

open-circuit stubs, and the other a number of short-

circuit stubs, connected to the main or auxiliary guides

(Fig. 2). At the midband frequency, these branch stubs

wil!l be kgo/8 long and spaced by hgo/4 between center

lines. The performance of the coupler can now be ex-

pressed in terms of the properties of these derived two-

port circuits. If the input to port 1 of the coupler is a

vo[tage vector of unit amplitude, the emergent voltage

vectors from the four ports of the coupler with each port

properly matched are given by:

Al = *[r-+ r+], (1)

42 = *[T– + T+], (2)

A, = +[T- – T+], (3)

A, = ~[r- – r+], (4)

where the suffix — refers to the short-circuit stub cir-

cuit, and the suffix + refers to the open-circuit stub

circuit.

Thus far, the development follows that of Reed and

Wheeler [7]. At this point, the argument leading to the

se]ection of a suitable taper can be taken up.

Each two-port circuit can be replaced by an equiva-

lent network of lumped elements. The XgO/8 stubs can

be simulated by the appropriate capacitance or induct-

ance over small percentage bandwidths, as shown in the

Appendix. The Xgo/4 lengths between stubs act as im-

pedance inverters; for simplification these will be as-

sumed invariant with frequency. (This assumption is

discussed later.) Hence the lumped networks of Fig.

3(&) and 3(b) are obtained, which are equivalent to the
two-port circuits of Fig. 2(a) and 2(b) respectively, for

N odd. An additional shunt element would be required

for Fig. 3(a) and 3(b) for N even.

The networks of Fig. 3(a) and 3(b) are, respectively,

hi,gh-pass and low-pass ladder networks. The elements

of each network may be tapered according to well-

known network theory [10] by the same proportional-
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Fig. 3—Lumped element equivalent circuits.

ity, so that the insertion loss characteristic of each net-

work is monotonic; i.e., may be represented by a func-

tion of the form 1 +X2N, where x is a frequency variable.

Then, for small values of insertion loss, the magnitude

of the input reflection coefficient will approximate

closely to a monotonic characteristic of the form XN.

Thus for the low-pass network, I I’-] Mco’N, where U’ is

given by (47), and forthehigh-pass network, 11’+ I a I/ti’N.

The values of I’– and 17+ at .fo for the networks equiva-

lent to the coupler with branch impedance values given

by (26) can be calculated from (14) and (21) to (23).

They are

(I’-)f, = 0.0006(1 + jl)

(r+)fo = 0.0006(1 – jl). (5)

The criterion of coupler performance to be studied

here is the directivity, which may be expressed as

lAS/A~\ . \ A31 varies by <10 per cent over the 25 per

cent frequency band of interest. This variation will not

significantly affect the directivity. AA is given by (4) as

the vector difference of I?_ and I’+. Therefore:
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1A, ] >~(lr-j + [r+l).

1I’_] and I r+ \ can be written as:
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(6)

() ()lr_\ = /r_]fO ~ ‘; Ir+l = ]r+lfo + ‘, (7)
Wo w

where Ir-1 j,= 117+l~o=0.00085, and N=5.
Hence, (6) may be written as

I A, I <0.00042 [(3+(31 ‘8)
For

ff=oo5 J
= 1.16, I A,l <0.0011

j-o”’;

and directivity

f–fo
$~56dbfor — <0.05.

fo

These figures suggest that the so-called “maximally

flat” taper when applied to 3-db branch couplers should

give good results over the small frequency range for

which the approximations are valid.

This taper is given by well-known network theory for

the high-pass ladder network of Fig. 3(a), as

1
—. psin(2n– 1)-&} (9)
gn

and for the low-pass ladder network of Fig. 3(b), as

gn=psin(2n–l)fi~ (lo)

where p is a constant determined by the equivalence of

the lumped element networks to the waveguide circuits

of Fig. 2. From either (9) or (10), the taper of branch im-

pedances of the coupler is given by

Z.=usin(2n– l)&, (11)

where u is a constant determined by the coupling ratio

of the branch coupler.

The main restriction to this argument lies in the as-

sumption that the Ago/4 lengths between branches are

frequency invariant. The results obtained, however, us-

ing the sine taper of (11) for 3-db couplers, suggest that

the approximations here are not worse than those made

by classical binomial theory [12] of weak coupling and

frequency invariant coupling elements. However, it is

not expected that the approximations made in the fore-

going analysis should be valid outside the range

Ag – Ago
<0.1,

Ago

and it must be presumed that the wide useful range of

Ag – Ago
<0.2

Ago

obtained in the present instance with a sine taper is due

to extra compensating effects not yet explained.

The theoretical characteristics of Figs. 4-6 were cal-

culated with the aid of an electronic computer, following

Reed and Wheeler’s [7] method of analysis. Once the

branch sizes are known—the analysis is straightforward,

and there is no necessity to assume that branch length

or branch spacing are frequency invariant. There is

therefore no restriction in the theoretical calculations on

that score, but the assumption is made that the T-junc-

tions are ideal; i.e., without reactive discontinuities.

However, as is shown in the succeeding sections of this

paper, the effects of these discontinuities can be largely

corrected in a practical design, so that measured char-

acteristics should agree fairly well with the theoretical

ones. The measured characteristics shown in Fig. 4 are

of a 3-db coupler designed by the methods of this paper,

but there the extent of the correction for discontinuity

effects has been limited by the physical requirement for

equal branch lengths. The agreement between measured

and theoretical performance in this instance is only fair.

Fig. 5 shows the theoretical performance of a five-

branch 3-db coupler designed by Harrison’s method [5]

with binomially tapered voltage coupling coefficients,

the resultant branch impedance taper being somewhat

‘%harper” than binomial. The theoretical performance

of a 3-db coupler with binomial taper of the branch im-

pedances, actual branch size being found by the method

given later in this paper, is shown in Fig. 6. It will be

seen that the input match has improved over that of

Fig. 5. This is part of a general trend of improvement

that takes place when the binomial taper is “flattenedn

towards the values given by the sine taper of (11). An

important fact is that the theoretical directivity is not

infinite at midband for any of the tapers discussed here,

least of all for the binomial taper of Fig. 5. This is not an
error in calculation, and may be easily checked by using

(19) and (21)–(23). This deficiency is avoided in the

design method employed by Reed and Wheeler [7]

and Young [8], which has been further developed by

Reed [9]. In this method, two branch impedance values

are determined by applying the two essential midband

conditions for coupling and for directivity. Thus the

midband performance is assured, but no broad-band

condition is applied.

It may be noted from Figs. 4-6 that the theoretical

coupling characteristic shown as power division ratio,

I AS/Azl 2, is not much affected by these changes of taper.
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EXACT BRANCH IMPEDANCE

The design methods of Harrison [5] and Crompton

[6] consider the multi-element coupler as a cascaded

series of two-element couplers. The coupling factor of

the multi-element coupler is then found by a simple sum-
mation of the power coupled by the two-element cou-

plers. This method cannot easily be applied to other than

binomial couplers and is strictly applicable only if the

total coupling is weak.

A more direct method, which avoids the above re-

strictions and is generally applicable, is possible. It is

based on Reed and Wheeler’s analysis, which can be de-

veloped in the following manner.

The trahsfer matrix of a lossless two-port circuit may

be written as

A jB

[1jCD’
(12)

taking Fig. 9 as a definition, so that the transmission and

reflection coefficients of this circuit can be expressed as:

2
T=

A+jB+jC+D’

~= A+jB–jC– D

A+jB+jC+D”

(13)

(14)

Let the matrix (12) apply in particular to the circuit of

Fig. 2(a) with open-circuit stubs, at the midband fre-

quency. Then the corresponding matrix of the circuit

of Fig. 2(b) with short-circuit stubs can be shown to be

(15)

when there are an odd number of stubs. With an even

number of stubs, both A and D change sign; the expres-

sions for A~ are the same as for the odd-number case ex-

cept for an interchange of Az and As.

The tapers considered here yield a circuit which is

symmetrical end for end; hence,

A=D

and ( l)–(4) can be developed as

AI =;(B2- C2), (16)

&=~(A+ D),

A,=*(B– c),

(17)

(18)

A4=#A+D)(B+ C);. (19)

where

Rz = (A + D)2 + (B + C)z.

The power balance at midband can now be expressed as

A3 2
= B+C2

z A+D’
(20)

for the coupler with an odd number of branches, and as

the reciprocal of this when there are an even number of

branches.

As a specific example, the foregoing ideas will be ap-

plied to the design of a five-branch 3-db coupler.

Let the normalized branch impedances be, in order,

21 22 23 22 21.

When the component matrices are multiplied out, the

elements of the matrix (12) are found to be, at .fo:

A = D = (ZIZZ – l)(z2z3 – 2) – 1, (21)

B = (ZIZ2 – 1) (2z1 + Z3 – Z1ZZZ3), (22)

C = z2(zz!z3 – 2). (23)

When the impedance taper is known, the matrix ele-

ments can be expressed in terms of z1, or any one-branch

impedance. The sine taper given by (11) applied to five

branches gives

22 = 2.618z1 23 = 3.236z1. (24)

Hence,

A3 .5.236 – 22.18zIZ + 11.09214
— = 21.
Az 1,000 – 13.71212 + 22.18z14 “

(25)

For a 3-db coupler:

A3
= 1.000,

x

and (25) can be solved for z1. It is not a difficult equa-

tion to solve, bearing in mind that only the smallest root

(of the order of 0.1) is required. The method of iterative

approximation is adequate. The resultant values for z.

are

21 = 0.1488

1

22 = 0.3896 . (26)

23 = 0.4815

These values will need to be corrected for the effect of

the T-junction discontinuities. The necessary correction
is given by (33), which can be stated as

z.
z.! = 7 (27)

mz sin O

where z~~ is the corrected value and mz, O are found as

shown later.

The narrow dimension bn of the nth branch guide is

found from the relation:

bn
2.’=—)

bo
(28)

where bo is the narrow dimension of main and auxiliary

guides.
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EXACT BRANCH LENGTH

The existance of reactive discontinuity effects at the

junction of a branch guide with main or auxiliary guides --IIL
!/

considerably modifies the performance of the branch ————_. —~~.-#,

guide. The effective size of a branch guide connected be- ~
tween two open E-plane junctions, which are commonly -4 & Zdn

used in branch couplers, may be derived as follows.
!1
II

Following Marcuvitz [11], the E-plane junction of
7271

/.
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Ta
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0 0

Fig. 7(a) may be represented by the lumped equivalent
(a)

network of Fig. 7(b), with suitable choice of reference Fig. 7—Open E-plane waveguide junction (cross section),
and lumped equivalent circuit.

planes TI and Tz. Values are given by Marcuvitz [11]

for all the necessary parameters, but it has been pointed

out to this author that the family parameter b/~g oc-

curring inside the graphs of all Marcuvitz’ 11-p]ane 1< ?

curves should be altered to 2b/Ag.

Let a branch guide of surge impedance Z.’ be con-
jO jB

netted between two such junctions and let the electrical

length of the branch guide measured between the corre-
[

~a z ‘rife)

spending terminal planes T1 of the junctions be Oradians.

The lumped equivalent circuit of a branch guide can Fig. 8—Equivalent branch circuit.

ncbw be drawn, including the equivalent parameters of

the junctions, the susceptances jB and ideal transform-

ers of impedance ratio mz, as shown in Fig. 8.

Defining the transfer matrix as in Fig. 9, the transfer

matrix .IV1 of the network of Fig. 8, assuming lossless F +’~
cc,mponents, is given by

r cos 6- BZ~’ sin /3 jZ.” sin 8

p ( 1

)1MI=j 2B cos 6 + — – B’Z.” sin 6Zm,l

cos 0 — BZn” sin 6’

writing

Z.” E m2Zm’.

“L
, (29)

;:I=E:1El
(30) Fig. 9—Transfer matrix definition.

With discontinuity effects the branch guide would be

of length hgO/4 and of surge impedance Z., for instance. The exact length, L. (Fig. 1), of a branch guide is

The transfer matrix .Mt of the equivalent line network is given by

O jZn

[1

hg!l

M2= j
L. = ~ e. – 21., (34)

o“
(31)

F. where 1. is the displacement of the reference plane T1

(Fig. 7).
The matrices Ml and Mz become identical if

The author has found that the lengths obtained by

cos 8 = BZn~l (32) these means for the larger branch guides of a five-branch
3-db coupler are almost exact. The approximate expres-

and sion given by Harrison [5] for the quantity L., viz.,

z.
2.1, _ .

sin e
(33) Ago 2bn

(

bo

)
Ln=y– — l+log. m , (35)

n- n

This follows by equating A and B elements and sub- has been found to predict values which are 6 per cent

s tituting these results in the C elements. short.
Initially only Z., the surge impedance of a branch

guide between ideal junctions, is known. However, the BRANCH SPACXNG

actual values required, Z.’ and 0, can be found quite Little manipulation is required to obtain this quan-

easily by successiv~ approximation using (30), (32), and tity. The spacing D~P between center lines of adjacent

(33). One or two iterations are usually sufficient. branch guides is given by
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D.P=~+d%+dP, (36)

where p = n ~ 1 and 2d. is the distance between the refer-

ence planes Tz (Fig. 7), of the nth branch guide junc-

tion.

COMPARISON OF THEORETICAL AND

PRACTICAL DESIGN

A five-branch coupler was designed by the foregoing

methods with main and auxiliary guide dimensions of

1.372 inches X0.622 inch. The branch impedances fol-

lowed the sine taper of (11). For comparison with a

coupler actually constructed, the coupling loss at the

midband frequency of 6200 mc has been made 2.90 db;

i.e., the power division ratio I At/AZ I 2= 0.22 db. This
necessitates a recalculation of the values for z%given by

(26). These become

Z1 = 0.1513
\

I22 = 0.3958 . (37)

23 = 0.4892j

The final calculated dimensions are given in Table I.

TABLE I

(kg,/4 = 0.661 inch)

n %’ L. (inches) D., (inches)

1, s 0.156 0.572 0.669
2,4 0.435

3
0.499 0.679

0.556 0.484 —

In order to simplify the mechanical design, it is com-

mon practice to make all branch arms the same length,

choosing a power-weighted average of the correct branch
lengths; i.e.,

For the design of Table I, this common length would be

about 0.496 inch. In an actual five-branch coupler with

the dimensions given in Table II designed with a sine

taper of branch impedances, the branch length required

to center the power division characteristic at 6200 mc

was found to be 0.496 inch. The agreement is fortui-

tous; an error of at least 1 per cent might be expected.

The measured power division ratio, I AS/As I z, was 0.2
db at midband, 6200 mc.

The practical values of branch impedance should be

related to the theoretical values of (37) by the previ-

ously used relation (33), restated as

z.
Znt = (38)

sin 2~LJhg0’

where L.fi is given the same value for each branch of

0.496 inch, and z. is given by (37). Hence at the mid-

band frequency of 6200 mc:

z.
Zn’=—.

0.924
(39)

This is a short cut on the design (27), the parameter mz

having been eliminated together with its associated line

length 1..

TABLE II

(hgO/4 =0.661 inch)

n .%’ zn/O.924 L. (inches) D.p (inches)

1,5 0.165 0.163 0.496
2,4 0.436

0.668
0.428 0.496

3 0.536
0.679

0.529 0.496 —

The actual value of z*’ required differs by 2 per cent

or less from the value predicted by (39).

Fig. 4 shows the directivity and coupling characteris-

tics of a coupler made to the dimensions given in Table

II and measured with all output ports terminated by

loads with less than 0.005 reflection coefficient.

With incomplete correction of junction discontinuity

effects, due to using a common branch length, the meas-

ured performance would not be expected to equal the

theoretical performance. Nevertheless, it is considerably

better than the theoretical performance of the binomial

couplers.

CONCLUSION

A considerable improvement, which is particularly

applicable to 3-db couplers, can easily be made on the

currently used binomial design of branch couplers.

The practical values of Table II differ from the pre-

dicted values by <2 per cent in branch length and

about 2 per cent in branch impedance. This is equivalent

to <1 per cent difference in midband frequency, and

about 0.3 db in power division ratio, I A3/Az 12, at mid-

band.

APPENDIX

Lumped Element Equivalence

The normalized input reactance Zi of a short-circuit

waveguide stub may be expressed as

z~ = z. tan 0/2.

Differentiating with respect to frequency,

dzi
~ sec2 — /2.?.%.?.,—. —

df dhg dh df
(40)

and since

dig ()
~g3

—..

AA’

(41)

(42)
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then

di A
—= ——,
df f

dzi ehgt()——~sr#f)/2.—. — .
~– 2 fk

When f =fo (6200 mc),

dzi

()

7rzn
.—.

7 f=.fo f

Correspondence

(43)

(44)

(45)

Thus, to a first-order approximation valid over a

small frequency range around fo, the slope of Zi is linear

and positive with frequency, and hence the short-circuit

stub can be represented as an inductance L., in Con-

junction with a certain frequency variable, co’, given by

J = ( co-kl(l
C’Jlll+7r —

@o )
(47)

A similar argument applies to the open-circuit stubs,

the slope of the input admittance being linear and posi-

tive with frequency to a first-order approximation so

that the open-circuit stub

capacity C., in conjunction

fo;mation of (47).

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

473

can be represented as a

with the frequency trans-

C~ is given by

(farads, with respect to unity

impedance level).
(48)
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Correspondence

The Analogy between the Weiss-

floch Transformer and the Ideal At-

tenuator (Reflection Coefficient

Transformer) and an Extension

to Include the General Lossy

Two-Port*

Weissfloch’s transformer theorem states
that at certain pairs of reference planes a
lo:jsless two-port can be represented by an
ideal transformer. There are many proofs
of this important theorem. One of the most
interesting is due to Bolinder,l who uses
properties of the bilinear transformation.
For lossless two-ports, the transformations
w U belong to the Fuchsian2 group. This

* Receivedby the PGMTT, Febrmry, 1959;
revised,March,19S9.

I E. E. Bolinder, “Impedance and polarization—
ratio transformations by a graphical method wing
the isometric circles, ” lRE TRANS.ON MICROWAVE
TIIEORY AND TECHNIQUES, vol. MTT-4, W. 176-
180; July, 19S6.

~ L. R. Ford, “Automorphic Functions, ” 2nd cd.,
Cllelsea Publishing Co., New York, N. Y.; 19.51.

means that the isometricl,2 circles are orthog-

onal to the principal circle. In the reflection
coefficient plane (where Bolinder proves the

theorem), the principal circle is the unit
circle. The fixed points of the transforma-
tion will be on the unit circle or in a pair
inverse with respect to the unit circle.
Bolinder then uses lengths of Iossless line to
move the fixed points to the positions
J?= +1. In the impedance plane this cor-
responds to fixed points of O and cc. There-

fore the transformation can be written as
Z’= kzZ and the transformer theorem is

proven. The transformation through the
two-port at any pair of reference planes, in

either the reflection coefficient or the impe-
dance plane, can be done by inversion in the
isometric circles and a reflection in the line

of symmetry,a as described by Fordz and
Bolinder.l

The reflection coefficient transformer-
(ideal attenuator), described by Altschulter

~ If the transformation is loxodro mic, a rotation
must be added.

and Kahn,4 has a scattering matrix

OK
s=

() Ko

where K is a real number and, for an attenua-
tor, less than unity. The transformation in
the reflection coefficient plane is r’= KT,
while in the impedance plane the cor-
responding relation is

2(1 + K’) +(1 – K’)
.— . .

2K
~t= 2K .

2(1 – K’) + li-Kz
——— ——

2K 2K

The fixed points of this transformation are
A 1 in the impedance plane and O and m

in the reflection coefficient plane. Both
transformers produce hyperbolic transfor-

~ H. M. Altschulter and W. K. Kahn, “Nonrecipro-
cal two-ports represented by modified Wheeler net-
works, ” IRE TRANS.ON MICROWAVETHEORY Ah-D
:9?$HNIQUES, vol. MTT.4, Pp. 228–233; October,


