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A Method for Accurate Design of a Broad-Band
Multibranch Waveguide Coupler*

K. G. PATTERSONT

Summary—A new approach is made to the problem of tapering
the branch impedances for broad-band performance, A taper is pro-
posed, which, for a 3-db branch coupler, is shown to give much better
results in theory and practice than the currently used binomial taper.

Also, simple expressions are developed which enable the effects
of waveguide junction discontinuities to be adequately corrected,
thus allowing a greater accuracy in design to be achieved than was
hitherto possible.

LisT oF SYMBOLS

Ago=Guide wavelength at the midband fre-
quency.
fo=Midband frequency of a coupler.
A =Normalized voltage vector (k=1, 2, 3
or 4).
T' = Reflection coefficient.
T =Transmission coefficient.
Z,=nth branch guide impedance.
Z,' = Corrected nth branch guide impedance.
2, =Zn/Zy, where Zy=main guide impedance.
Zn’ = Zn//Zo.
Vn=1/2s.
g.=nth element of normalized prototype
network in farads or henries with respect
to unity impedance level.
p, 0 =Constants.
N =Total number of branches.
A, B, C, D= Matrix parameters.
j=Complex operator.
a=Broad dimension of all guides.
bo= Narrow dimension of main and auxiliary
guides.
b, = Narrow dimension of #th branch guide.
7B =Equivalent susceptance.
m?=1Ideal transformer impedance ratio.
# = Electrical line length in radians.
d., l,=Displacement of reference planes.
L,=Physical length of a branch guide.
D.,,=Spacing between branch guide centers
(p=nzxl).
X\ = Free-space wavelength at a frequency f.
f=Frequency.
w=27f.
Wy = 27ng.

* Original manuscript received by the PGMTT, March 27,
1959; revised manuscript received, June 22, 1959,

1 Communication from the Staff of the Research Laboratories
of the General Electric Co., Ltd., Wembly, England.

INTRODUCTION

INCE 1945, a considerable number of papers have
S been written on the subject of directional couplers,

notably by Riblet [1], Mumford [2],and Lippmann
[3]; much of the theory presented therein is applicable
to multi-element couplers employing branch lines or
guides as coupling elements. These authors, however,
were principally concerned with methods of analysis of
the general multi-element coupler with ideal coupling
elements; when practical design information on branch
couplers is required, the engineer usually turns to the
report by Harrison [5].

The section of Harrison's report [5] which deals with
branch couplers is based on a report by Lippmann [4]
which is not generally available, and which is restricted
in its scope. The essential problem of optimum taper of
branch impedances is given scant consideration, and the
problem of correction for the discontinuity effects at
the T-junctions is not accurately treated except for cer-
tain waveguide sizes where Lippmann’s results [4] are
quoted.

This paper is concerned with these two problems and
is intended to fill in the gaps in the present design tech-
niques with the presentation of some simple and gen-
erally applicable design equations.

TAPER oF BRANCH IMPEDANCES

The branch waveguide coupler comprises a main
guide coupled to an auxiliary guide of equal size by a
number of branch guides (Fig. 1). The branch guides are
usually series-connected by T-junctions to the main and
auxiliary guides; their narrow dimension may be varied
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Fig. 1—Multibranch waveguide coupler, cross section.
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according to the taper and coupling required; their
broad dimension is made equal to that of the main and
auxiliary guides. If the T-junctions are ideal; i.e., there
are no waveguide discontinuity effects, the length of a
branch guide will be Ngo/4, and the spacing between the
corresponding points of adjacent guides will be Ag/4 at
the midband or design frequency. When the ratio of in-
put power to power coupled to the auxiliary guide is
3db, such a coupler has all the properties of a hybrid
junction.

There is a plane of symmetry between the main and
auxiliary guides which bisects the branch guides trans-
versely. Hence this type of coupler can be fully analyzed
by the mode superposition method employed by Reed
and Wheeler [7] and Young [8]. The substance of this
method is that two related two-port circuits are derived
from the coupler by first placing a magnetic and then
an electric wall in the above mentioned plane of sym-
metry. One two-port circuit comprises a number of
open-circuit stubs, and the other a number of short-
circuit stubs, connected to the main or auxiliary guides
(Fig. 2). At the midband frequency, these branch stubs
will be Ago/8 long and spaced by Ago/4 between center
lines. The performance of the coupler can now be ex-
pressed in terms of the properties of these derived two-
port circuits. If the input to port 1 of the coupler is a
voltage vector of unit amplitude, the emergent voltage
vectors from the four ports of the coupler with each port
properly matched are given by:

4, = %[P-— + Itl—]’ (1)
4y = 3[T_+ T,], (2)
Ay = 3[T- — T4], (3)
Ay =3[T- —Ty], 4

where the suffix — refers to the short-circuit stub cir-
cuit, and the suffix 4 refers to the open-circuit stub
circuit.

Thus far, the development follows that of Reed and
Wheeler [7]. At this point, the argument leading to the
selection of a suitable taper can be taken up.

Each two-port circuit can be replaced by an equiva-
lent network of lumped elements. The Ago/8 stubs can
be simulated by the appropriate capacitance or induct-
ance over small percentage bandwidths, as shown in the
Appendix. The Ago/4 lengths between stubs act as im-
pedance inverters; for simplification these will be as-
sumed invariant with frequency. (This assumption is
discussed later.) Hence the lumped networks of Fig.
3(a) and 3(b) are obtained, which are equivalent to the
two-port circuits of Fig. 2(a) and 2(b) respectively, for
N odd. An additional shunt element would be required
for Fig. 3(a) and 3(b) for N even.

The networks of Fig. 3(a) and 3(b) are, respectively,
high-pass and low-pass ladder networks. The elements
of each network may be tapered according to well-
known network theory [10] by the same proportional-
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Fig. 3—Lumped element equivalent circuits.

ity, so that the insertion loss characteristic of each net-
work is monotonic; Z.e., may be represented by a func-
tion of the form 1+x2?¥, where x is a frequency variable.
Then, for small values of insertion loss, the magnitude
of the input reflection coefficient will approximate
closely to a monotonic characteristic of the form x?#.
Thus for the low-pass network, |T'_| «w’¥, where ’ is
givenby (47),and for thehigh-passnetwork, |I‘+| x1/w¥,
The values of I'_ and I';. at fj for the networks equiva-
lent to the coupler with branch impedance values given
by (26) can be calculated from (14) and (21) to (23).
They are

(I2)z, = 0.0006(1 + j1)
(T4)s, = 0.0006(1 — 51). (5)

The criterion of coupler performance to be studied
here is the directivity, which may be expressed as
| As/A4|. | As] varies by <10 per cent over the 25 per
cent frequency band of interest. This variation will not
significantly affect the directivity. 44 is given by (4) as
the vector difference of I'_and I',. Therefore:



| 4a] >3 0| + |18 ]). (6)

IT_| and | T | can be written as:

el = ()5 ] = () @

’
w

where |T'_|;,= | T'+| /,=0.00085, and N=35.
Hence, (6) may be written as

| 44| < 0.00042 [(%)N + (»Z—f)N] : 8

For
. ’
T2l _g0s,  “_t116 |44 <o00011
Jo wo
and directivity
A —_—
l—i > 56 db for | f"’ < 0.05.
4 0

These figures suggest that the so-called “maximally
flat” taper when applied to 3-db branch couplers should
give good results over the small frequency range for
which the approximations are valid.

This taper is given by well-known network theory for
the high-pass ladder network of Fig. 3(a), as

! in (21 — 1) — 9)
— = psin 2n — 1) —
2 p SL ZN,

and for the low-pass ladder network of Fig. 3(b), as

™
» = psin (2n — 1) — 10
g = psin (2n )2N’ (10)

where p is a constant determined by the equivalence of
the lumped element networks to the waveguide circuits
of Fig. 2. From either (9) or (10), the taper of branch im-
pedances of the coupler is given by

(11)

in (22 — 1) —
n = O SIn 7 2N’

where o is a constant determined by the coupling ratio
of the branch coupler.

The main restriction to this argument lies in the as-
sumption that the Ago/4 lengths between branches are
frequency invariant. The results obtained, however, us-
ing the sine taper of (11) for 3-db couplers, suggest that
the approximations here are not worse than those made
by classical binomial theory [12] of weak coupling and
frequency invariant coupling elements. However, it is
not expected that the approximations made in the fore-
going analysis should be valid outside the range
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and it must be presumed that the wide useful range of

A — A
‘—g———ﬁ < 0.2

)\go

obtained in the present instance with a sine taper is due
to extra compensating effects not yet explained.

The theoretical characteristics of Figs. 4-6 were cal-
culated with the aid of an electronic computer, following
Reed and Wheeler’s [7] method of analysis. Once the
branch sizes are known—the analysis is straightforward,
and there is no necessity to assume that branch length
or branch spacing are frequency invariant. There is
therefore no restriction in the theoretical calculations on
that score, but the assumption is made that the 7-junc-
tions are ideal; 4.e., without reactive discontinuities.
However, as is shown in the succeeding sections of this
paper, the effects of these discontinuities can be largely
corrected in a practical design, so that measured char-
acteristics should agree fairly well with the theoretical
ones. The measured characteristics shown in Fig. 4 are
of a 3-db coupler designed by the methods of this paper,
but there the extent of the correction for discontinuity
effects has been limited by the physical requirement for
equal branch lengths. The agreement between measured
and theoretical performance in this instance is only fair.

Fig. 5 shows the theoretical performance of a five-
branch 3-db coupler designed by Harrison’s method [5]
with binomially tapered voltage coupling coefficients,
the resultant branch impedance taper being somewhat
“sharper” than binomial. The theoretical performance
of a 3-db coupler with binomial taper of the branch im-
pedances, actual branch size being found by the method
given later in this paper, is shown in Fig. 6. It will be
seen that the input match has improved over that of
Fig. 5. This is part of a general trend of improvement
that takes place when the binomial taper is “flattened”
towards the values given by the sine taper of (11). An
important fact is that the theoretical directivity is not
infinite at midband for any of the tapers discussed here,
least of all for the binomial taper of Fig. 5. This is not an
error in calculation, and may be easily checked by using
(19) and (21)—(23). This deficiency is avoided in the
design method employed by Reed and Wheeler [7]
and Young [8], which has been further developed by
Reed [9]. In this method, two branch impedance values
are determined by applying the two essential midband
conditions for coupling and for directivity. Thus the
midband performance is assured, but no broad-band
condition is applied.

It may be noted from Figs. 4-6 that the theoretical
coupling characteristic shown as power division ratio,
| As/A2I %, is not much affected by these changes of taper.
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Exact BRANCH IMPEDANCE

The design methods of Harrison [5] and Crompton
[6] consider the multi-element coupler as a cascaded
series of two-element couplers. The coupling factor of
the multi-element coupler is then found by a simple sum-
mation of the power coupled by the two-element cou-
plers. This method cannot easily be applied to other than
binomial couplers and is strictly applicable only if the
total coupling is weak.

A more direct method, which avoids the above re-
strictions and is generally applicable, is possible. It is
based on Reed and Wheeler’s analysis, which can be de-
veloped in the following manner.

The transfer matrix of a lossless two-port circuit may

be WI‘itten as
j[ l ’

taking Fig. 9 as a definition, so that the transmission and
reflection coefficients of this circuit can be expressed as:

2
T = N N b
A+jiB+jC+ D
4+4jB—jC—-D
A+jB+j5C+ D
Let the matrix (12) apply in particular to the circuit of
Fig. 2(a) with open-circuit stubs, at the midband fre-

quency. Then the corresponding matrix of the circuit
of Fig. 2(b) with short-circuit stubs can be shown to be

e o]
—-jc pl’

when there are an odd number of stubs. With an even
number of stubs, both 4 and D change sign; the expres-
sions for A; are the same as for the odd-number case ex-
cept for an interchange of 4; and 4.

The tapers considered here yield a circuit which is
symmetrical end for end; hence,

A=D
and (1)-(4) can be developed as

(12)

(13)

(14)

(15)

1
i == (B = ), (16)
dr= (4 + D), (17)
R?
4= -0, (18)
R2
Ao = :Rl (4 + D)(B+ O); (19)

where
R=(4+ D)+ (B+ O™

The power balance at midband can now be expressed as
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2

, (20)

4s
As

B4+ C
A+ D

g

for the coupler with an odd number of branches, and as
the reciprocal of this when there are an even number of
branches.

As a specific example, the foregoing ideas will be ap-
plied to the design of a five-branch 3-db coupler.

Let the normalized branch impedances be, in order,

Z1 %2 %3 22 3i1.

When the component matrices are multiplied out, the
elements of the matrix (12) are found to be, at fo:

A=D= (Z]_Zz - 1)(2223 - 2) - 1, (21)
B = (2122 — 1)(221 —I" Z3 — 212223), (22)
C = 29(z923 — 2). (23)

When the impedance taper is known, the matrix ele-
ments can be expressed in terms of z, or any one-branch
impedance. The sine taper given by (11) applied to five
branches gives

29 = 2.618z, 23 = 3.2362,. (24)
Hence,
As 5.236 — 22.18z:2 + 11.09z,4
— = 1Z1" . (25)
A, 1.000 — 13.712:% + 22.18z*

For a 3-db coupler:

El

2

= 1.000,

and (25) can be solved for z. It is not a difficult equa-
tion to solve, bearing in mind that only the smallest root
(of the order of 0.1) is required. The method of iterative
approximation is adequate. The resultant values for z,
are

z = 0.1488
2 = 0.3896}. (26)
23 = 0.4815

These values will need to be corrected for the effect of
the 7-junction discontinuities. The necessary correction
is given by (33), which can be stated as

Zn
z, = 27)

?
m? sin 6

where 2, is the corrected value and m?2, § are found as
shown later.

The narrow dimension b, of the nth branch guide is
found from the relation:

l__b”
Zn =
bo

(28)

where by is the narrow dimension of main and auxiliary
guides.
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Exact BRANCH LENGTH

The existance of reactive discontinuity effects at the
junction of a branch guide with main or auxiliary guides
considerably modifies the performance of the branch
guide. The effective size of a branch guide connected be-
tween two open E-plane junctions, which are commonly
used in branch couplers, may be derived as follows.

Following Marcuvitz [11], the E-plane junction of
Fig. 7(a) may be represented by the lumped equivalent
network of Fig. 7(b), with suitable choice of reference
planes T and T3. Values are given by Marcuvitz [11]
for all the necessary parameters, but it has been pointed
out to this author that the family parameter 5/\g oc-
curring inside the graphs of all Marcuvitz' E-plane
curves should be altered to 25/Ag.

Let a branch guide of surge impedance Z,’ be con-
nected between two such junctions and let the electrical
length of the branch guide measured between the corre-
sponding terminal planes T of the junctions be 8 radians.
The lumped equivalent circuit of a branch guide can
now be drawn, including the equivalent parameters of
the junctions, the susceptances jB and ideal transform-
ers of impedance ratio m2, as shown in Fig. 8.

Defining the transfer matrix as in Fig. 9, the transfer
matrix M; of the network of Fig. 8, assuming lossless
components, is given by

cos § — BZ,” sin 0 7Z," sin 6

My= j[ZB cos 8 + (Zl - B?Zn") sin 0] » (29)
cos § — BZ,' sin §
writing
= miz,) (30)

With discontinuity effects the branch guide would be
of length Ago/4 and of surge impedance Z,, for instance.
The transfer matrix Ms of the equivalent line network is

0 jZ,.
My=1 g (31)
— 0
Z,
The matrices M, and M, become identical if
cos § = BZ,” (32)
and
Z,
Z) = — (33)
sin &

This follows by equating 4 and B elements and sub-
stituting these results in the C elements.

Initially only Z,, the surge impedance of a branch
guide between ideal junctions, is known. However, the
actual values required, Z,” and 8, can be found quite
easily by successive approximation using (30), (32), and
(33). One or two iterations are usually sufficient.
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The exact length, L, (Fig. 1), of a branch guide is
given by

A
L, =g _

21,
27

(34)
where I, is the displacement of the reference plane T3
(Fig. 7).

The author has found that the lengths obtained by
these means for the larger branch guides of a five-branch
3-db coupler are almost exact. The approximate expres-
sion given by Harrison [5] for the quantity L., viz.,

A 2b, b
8 ’ ) : (35)
2b,

Ly =—— ———(1 + log.
4 T

has been found to predict values which are 6 per cent
short.

BrANCH SPACING

Little manipulation is required to obtain this quan-
tity. The spacing D.,, between center lines of adjacent
branch guides is given by
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)\go
Dy = T + dn + dy, (36)
where p=n 11 and 2d, is the distance between the refer-
ence planes 73 (Fig. 7), of the nth branch guide junc-
tion.

COMPARISON OF THEORETICAL AND
PracticAL DESIGN

A five-branch coupler was designed by the foregoing
methods with main and auxiliary guide dimensions of
1.372 inches X0.622 inch. The branch impedances fol-
lowed the sine taper of (11). For comparison with a
coupler actually constructed, the coupling loss at the
midband frequency of 6200 mc has been made 2.90 db;
i.e., the power division ratio | 43/4s|2=0.22 db. This
necessitates a recalculation of the values for 3, given by
(26). These become

g1 = 0,1513
23 = 0.39581. 37
g3 = 0.4892

The final calculated dimensions are given in Table 1.

TABLE I

(Ngo/4=0.661 inch)

n %’ L, (inches) t D, (inches)
1,5 0.156 0.572 0.669
2,4 0.435 0.499 0.679

3 0.556 0.484 —

In order to simplify the mechanical design, it is com-
mon practice to make all branch arms the same length,
choosing a power-weighted average of the correct branch
lengths; i.e.,

2 %2Ly
2.5t

For the design of Table I, this common length would be
about 0.496 inch. In an actual five-branch coupler with
the dimensions given in Table II designed with a sine
taper of branch impedances, the branch length required
to center the power division characteristic at 6200 mc
was found to be 0.496 inch. The agreement is fortui-
tous; an error of at least 1 per cent might be expected.
The measured power division ratio, | 4s/4,|2, was 0.2
db at midband, 6200 mc.

The practical values of branch impedance should be
related to the theoretical values of (37) by the previ-
ously used relation (33), restated as

%n
By = (38)
sin 2w L,/Ago

where L, is given the same value for each branch of
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0.496 inch, and 2z, is given by (37). Hence at the mid-
band frequency of 6200 mc:
Zn

W = e (39)

This is a short cut on the design (27), the parameter m?
having been eliminated together with its associated line
length 7,.

TABLE 11

(Ago/4=0.661 inch)

n 20’ 2,/0.924 L, (inches) |Dn, (inches)
1,5 0.165 0.163 0.496 0.668
2,4 0.436 0.428 0.496 0.679

3 0.536 0.529 0.496 —

The actual value of z,’ required differs by 2 per cent
or less from the value predicted by (39).

Fig. 4 shows the directivity and coupling characteris-
tics of a coupler made to the dimensions given in Table
IT and measured with all output ports terminated by
loads with less than 0.005 reflection coefficient.

With incomplete correction of junction discontinuity
effects, due to using a common branch length, the meas-
ured performance would not be expected to equal the
theoretical performance. Nevertheless, it is considerably
better than the theoretical performance of the binomial
couplers.

CoNCLUSION

A considerable improvement, which is particularly
applicable to 3-db couplers, can easily be made on the
currently used binomial design of branch couplers.

The practical values of Table IT differ from the pre-
dicted values by <2 per cent in branch length and
about 2 per cent in branch impedance. This is equivalent
to <1 per cent difference in midband frequency, and
about 0.3 db in power division ratio, | 43/4:|?, at mid-
band.

APPENDIX
Lumped Element Equivalence

The normalized input reactance z; of a short-circuit
waveguide stub may be expressed as

%; = 3, tan /2,

Differentiating with respect to frequency f,

dz; d9 dig dx
= —sec? — /2. — " —, (40)
a2 drg d\ df
and since

df 0
————, (41)
d\g Ag
g (Ag)a
—=(= 42
™ Y (42)
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L (43)

then
dz; 2 6 [\g
— = —sec? /2. — ( > (44)
af
When f=f, (6200 mc),
)\ 2
<_g> =~ 2 and 0=~1r—:
A 2
dz; TZn
)2 e
af Ji~to [

Thus, to a first-order approximation valid over a
small frequency range around fy, the slope of z; is linear
and positive with frequency, and hence the short-circuit
stub can be represented as an inductance L,, in con-

Correspondence
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that the open-circuit stub can be represented as a
capacity C,, in conjunction with the frequency trans-
formation of (47). C, is given by

C. = Yn (farads, with respect to unity
=

wo impedance level). (48)
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The Analogy between the Weiss~
floch Transformer and the Ideal At-
tenuator (Reflection Coefficient
Transformer) and an Extension

to Include the General Lossy
Two-Port*

Weissfloch’s transformer theorem states
that at certain pairs of reference planes a
lossless two-port can be represented by an
ideal transformer. There are many proofs
of this important theorem. One of the most
interesting is due to Bolinder,! who uses
properties of the bilinear transformation.
For lossless two-ports, the transformations

will belong to the Fuchsian? group. This

* Received by the PGMTT, February,
revxsed March, 1959,

E. olmder “Impedance and polanzatlon——-
ratlo transformations by a graphical method using
the isometric circles,” IRE TRANS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-4, pp. 176~
180 July, 1956.

Ford, “Automorphic Functions,” 2nd ed.,
Chelsea Pubhshmg Co., New York, N. Y,; 1951.

1959;

means that the isometric! -2 circles are orthog-
onal to the principal circle, In the reflection
coefficient plane (where Bolinder proves the
theorem), the principal circle is the unit
circle. The fixed points of the transforma-
tion will be on the unit circle or in a pair
inverse with respect to the unit circle.
Bolinder then uses lengths of lossless line to
move the fixed points to the positions
T'=+1. In the impedance plane this cor-
responds to fixed points of 0 and . There-
fore the transformation can be written as
Z'=FkZ and the transformer theorem is
proven. The transformation through the
two-port at any pair of reference planes, in
either the reflection coefficient or the impe-
dance plane, can be done by inversion in the
isometric circles and a reflection in the line
of symmetry,® as described by Ford? and
Bolinder.}

The reflection coefficient transformer-
(ideal attenuator), described by Altschulter

3 If the transformation is loxodromic, a rotation
must be added.

and Kahn, has a scattering matrix
0 K
s=(
K 0

where K is a real number and, for an attenua-
tor, less than unity. The transformation in
the reflection coefficient plane is I'=X?T,
while in the impedance plane the cor-
responding relation is
ZA+EY (1= KY
2K 2K
Z(1 —K“’)+ 1+ K2
2K 2K

z =

The fixed points of this transformation are
+1 in the impedance plane and 0 and «
in the reflection coefficient plane. Both
transformers produce hyperbolic transfor-

4+ H. M, Altschulter and W, K. Kahn, “Nonrecipro-
cal two-ports represented by modified Wheeler net-
works,” IRE TRANS, ON MICROWAVE THEORY AND
TESCHNIQUES, vol. MTT-4, pp. 228-233; October,
1956.



